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Abstract. In the present paper we report theoretical calculations for the Hugoniot of shock-
compressed rubidium. We use an all-electron full-potential method based on density-functional
theory to obtain the total energy, pressure and electronic density of states. Thermal contributions
to the equation of state (EOS) were introduced through temperature dependent occupation of the
electronic states and a Grüneisen model was used for determining the nuclear thermal motion. The
calculated Hugoniot is in very good agreement with the shock experiments. A temperature of about
10 000 K is reached at the pressure of about 300 kbar, the highest reached experimentally. Rubidium
was chosen for this study because it undergoes a sequence of unusual pressure-induced structural
transitions which have been attributed to s–d electron transfer. Since most studies of s–d transfer
have been carried out at temperatures below 500 K, little is known of how it effects the equation
of state at very high temperature. We found that the predicted Rb Hugoniot is very sensitive to the
thermal s–d electron transfer, which leads to a considerable lowering of the predicted Hugoniot
pressure and temperature.

1. Introduction

High pressure diamond-anvil experiments supplemented by electron band calculations have
now provided sufficient data to clearly demonstrate that s–d electron transfer is responsible
for many of the pressure-induced structural transformations observed in the transition and
rare-earth metals [1] and the heavy alkali and alkaline metals [1–3]. For example, in the
case of the transition metals it has been shown that the structural sequence across the series,
hcp→ bcc→ hcp→ fcc can be related to the increase in d-electron occupation number
as the energy bands become progressively filled [1]. The trivalent lanthanide metals from
La to Lu, (excluding Ce, Eu and Yb) show a systematic sequence of phase transitions
hcp→ Sm-type→ dhcp→ fcc → distorted fcc that has been related to an increasing
d character of the conduction band under pressure [3].

The physical origin of the s–d transfer has been found from electron band calculations.
Because s-wave functions are more extended in space than d functions, compression induces
the s-like states to rise in energy relative to the d-like levels leading to a transfer of s-like
conduction electrons to d-states. Since the s-like levels rise in energy with compression they
are more repulsive and this transfer is accompanied by a lowering of the pressure and an
increase in the compressibility of the material. s–d electron transfer is now recognized as
one of the most important guiding principles for understanding the high pressure states of the
metallic elements.

It is generally agreed that s–d electron transfer can also be accomplished by increasing the
temperature. However, virtually all of the experimental work to date on the s–d transition has
been carried out at or near room temperature using diamond-anvil cells (DACs) so that there is
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very little known experimentally about how thermal s–d transfer actually affects the equation
of state.

Shock-wave experiments have proven to be a very important method for generating
simultaneously very high pressures and temperatures. In a shock-wave experiment, a
supersonic wave is passed through the material under investigation [4]. A measurement of
the shock velocity and mass velocity are sufficient to determine the thermodynamic pressure,
volume and energy (P , V ,E) of the compressed state. TheP , V andE behind the shock front
are related to the initial properties (P0, V0, E0) in front of the shock wave by the Hugoniot
equation,

E − E0 = 1
2(P + P0)(V0 − V ). (1)

The resultingP–V curve is known as a Hugoniot and represents the locus of points that can be
reached from an initial condition. However, temperature cannot be obtained directly from the
Hugoniot but must either be measured by a separate diagnostic, usually by fitting the emitted
radiation to a Planckian function, or determined from a calculation. The Hugoniot can be
calculated for a given material by using equation (1) with a knowledge of the equation of state.

Of the metallic elements, the heavy alkali metals Rb and Cs are among the best suited
for studying the effects of thermal electron excitation. These metals undergo a sequence of
unusual structural transitions which have been attributed to s–d electron transfer [5, 6]. They
are very compressible so that shock experiments lead to very high temperatures. In the case
of Rb we estimate the temperature to be about 13 000 K (kT ∼ 1.1 eV) near 300 kbar. For
comparison, iron only reaches a temperature of 10 000 K when shock compressed to 4.0 Mbar
[7]. Since alkali metal Fermi energies are of the order of 2 eV the high temperature generated in
a shock experiment can be expected to thermally excite a large fraction of conduction electrons
from s to d states. The relatively small Fermi energy and high compressibility of alkali metals
suggests that these elements provide an optimum set of materials for studying the effects of
temperature on the equation of state of metals.

Hugoniot measurements for shock-compressed Cs and Rb were reported by Rice in 1965
[8]. Of the two metals Rb is the more favourable case for further theoretical examination. The
reason is that the s–d transition for caesium begins near atmospheric pressure and terminates
near 100 kbar, and this pressure only marginally overlaps the lower range for which the shock
technique becomes useful. In the case of Rb the s–d transition terminates near 400 kbar and
thus provides the better candidate for further study.

In the present paper we report calculations of the Rb Hugoniot in which we use state of
the art electron band theory methods to obtain contributions to the thermodynamic properties
arising from the thermally excited electrons. The equation of state is calculated by the
Grüneisen model, described in section 2. This section also includes the description and results
of the full-potential linear muffin-tin method (FP-LMTO) band theory used to calculate a
series of finite temperature static lattice isotherms. The results of the Hugoniot calculations
are in section 3, and section 4 is the discussion. The results point out the need to explicitly
include electronic thermal excitation in order to accurately describe the thermodynamic state
of shock-compressed Rb.

2. The Grüneisen equation of state

The energy and pressure for shock compressed Rb were calculated using the Grüneisen model
[9, 10], where

E(T , V ) = Eel(T , V ) + 3NkT (2)
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and

P(V, T ) = Pel(T , V ) + 3γnNkT/V . (3)

Eel(T , V ) andPel(T , V ) refer to the total energy and pressure of the finite temperature static
lattice (omitting nuclear motion) calculated by the FP-LMTO method described below. The
second terms in equations (2) and (3) are the thermal corrections arising from nuclear motion,
whereγn is the Gr̈uneisen parameter.

2.1. The Gr̈uneisen parameter

The Gr̈uneisen parameter is defined asγn = V (∂P/∂E)v and was calculated from the Slater
model [11],

γn = −2

3
− V

2

[
∂2PL

∂V 2

/
∂PL

∂V

]
.

PL is the static lattice pressure at 300 K. Strictly,PL should be determined atT = 0 K but
the difference can be shown to be negligible, particularly for the case of very high final shock
temperatures.

The Gr̈uneisen model is a simple approximation, but a reliable model for a
thermodynamically self-consistent hot liquid s–d metal is not now available, and is unlikely
to be for some time. However, to justify our particular use of the Slater model we show
below, in figure 7, that in the region of interest both the Slater and the Dugdale–McDonald [4]
approximations give almost identical results. Perhaps more important, both models approach
the correct limiting case for a static lattice,γn = 0.5.

2.2. The full-potential linear muffin-tin method (FP-LMTO)

The electronic equation of state and electronic structure were calculated by the all-electron
first-principles full-potential linear muffin-tin orbital (FP-LMTO) method. The method
uses linear muffin-tin orbitals in the wave function expansions and the potential makes no
shape approximation in the interstitial regions. The method is based on the local-density
approximation (LDA) for the electron exchange and correlation energy of the electrons but in
this work we have adopted a more modern and accurate version which also contains corrections
originating from gradient terms of the electron density. This method is referred to as the
generalized gradient approximation (GGA) [12]. The electron charge density and potential is
determined by the process of minimizing the total energy.

The wave function is represented as an expansion of basis functions. Since the number
of k points used in the calculation has to be finite we chose to use up to about 200k points
in the irreducible part of the Brillouin zone. Furthermore, all relativistic terms, including the
spin–orbit coupling, are accounted for in the Hamiltonian.

The present method incorporates non-sphericity to the charge density and potential by
representing the crystal with non-overlapping spheres (of a variable, optimum size) surrounding
each atomic site and a general shaped interstitial region between the spheres. Hence, we deal
with two types of geometrical region in the calculations. Inside the spheres, the wave functions
are represented as Bloch sums of so-called linear muffin-tin orbitals and are expanded by means
of structure constants. The kinetic energy is not restricted to be zero in the interstitial region
and the wave function expansion contains Hankel and Neumann functions (depending on sign
of the kinetic energy) together with Bessel functions.

In order to represent the wave functions in Rb as accurately as possible we have defined
here, in a single energy panel, 4s and 4p semi-core states and 5s, 5p, 4d and 4f valence
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states. The ‘double-basis-set’ approach has been used, i.e. two kinetic energy parametersκ2

appropriate for the tails of the semi-core states, and the valence states have been used.
As in the case for iron [13], the total energy converges slowly with respect to thek-point

sampling used in the appropriate summations over the Brillouin zone (BZ) at high pressures.
Here we have used up to 204k points in the irreducible (1/48th) part of the BZ. The 33
total energy points were then locally fitted in a least-squares manner using the Murnaghan
equation-of-state form [14].

The total energy was calculated at 33 volumes for six different temperatures, 315, 2000,
4400, 8800, 17 600 and 25 000 K. The calculation is self-consistent. The thermally excited
electronic structure is calculated from the Fermi–Dirac temperature distribution and the entropy
is obtained from the density of states. The electronic entropy contribution is determined from
the expression

Sel/k = −
∫
N(E)[(f ) log(f ) + (1− f ) log(1− f )] dE

whereN(E) and f are the electron density and the Fermi–Dirac function, respectively.
The thermodynamic variables are then determined from the Helmholtz free energy,Ael =
Eel − T Sel . These data are then introduced into the Grüneisen equation of state model.

2.3. Finite temperature FP-LMTO results

At ambient conditions rubidium stabilizes in the bcc structure. With increasing pressure the
solid converts to fcc at 70 kbar and above 130 kbar goes through a transition leading to several
new phases of undetermined structures [15]. As a result the higher pressure isotherm is not well
known. Figure 1 shows the DAC isotherm curve obtained from the fits to data of Winzenicket al
[15], and points calculated using the full-potential linear muffin-tin method (FP-LMTO). The
agreement between experiment and theory is good up to the fcc–phase III transition at 130 kbar.
Above this pressure the Hugoniot is already in the liquid phase and further comparisons with
DAC studies are irrelevant. Of greater importance are the high temperature isotherms and the
density of states.

Figure 2 shows a series of isotherms calculated for temperatures ranging from 300 to
25 000 K. The noteworthy feature is that with successively higher temperature, up to about
200 kbar, each isotherm has a lower pressure at a given volume. This unusual behaviour is a
consequence of the s–d transition.

Figures 3(a)–(d) show the calculated density of states (DOS) for bcc rubidium at several
successively smaller volumes. In our approach thel-projected DOS can only be obtained
within the muffin-tin spheres. One cannot distinguish in these plots between, for example, 4s
and 5s states. As a function of compression a small fraction of the electrons will leak out to
the interstitial region with no specificl character. For Rb, however, the total leakage of core
and valence electrons was rather small. At ambient pressure, about 0.5 electrons and at the
highest pressure about one electron occupied the interstitial region.

At ambient conditions, figure 3(a), the electronic character is mainly s-like with a strong
mix of p and d below the Fermi surface, but mainly d-like above the Fermi-surface. With
compression the electronic character becomes increasingly d-like. This results in a highly
compressible 0 K static lattice isotherm. The effect of temperature is to thermally excite
electrons above the Fermi surface thereby increasing the overall d character and lowering
the pressure. The DOS plots show that Rb becomes predominantly d-like in the pressure
range above 300 kbar and further compression or thermal excitation can no longer change
the electronic character. In other words the s–d transition is complete and as a result all the
isotherms converge, as in figure 2. The effect of both compression and temperature is also
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Figure 1. Rubidium isotherms. The full curve is the diamond anvil cell (DAC) room temperature
isotherm plotted from the fits to data of Winzenicket al [15], and the circles are the calculated
values obtained using the full-potential linear muffin-tin method (FP-LMTO).

Figure 2. Isotherms calculated for temperatures ranging from 300 to 25 000 K. The highest
pressure isotherm (full curve) is at 300 K. With decreasing pressure, but increasing temperature,
are isotherms at 8800, 17 600 and 25 000 K (short-dashed curve).

shown in figure 4, the d occupation increasing at the expense of the s electrons with increasing
compression. The effect of the higher temperatures is to transfer s electrons to d states for all
but the most compressed volumes, where the temperature effect diminishes and even reverses.
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Figure 3. Calculated electron density of states (DOS) for bcc rubidium at the volumes indicated.
The Fermi energy,EF , is set to 0 eV.
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Figure 4. The effect of both compression and temperature on the electron on the s and d occupation
number. d occupation increases at the expense of the s electrons with increasing compression. The
effect of the higher temperatures is to transfer s electrons to d states for all but the most compressed
volumes where the temperature effect diminishes.

Figure 5. Room temperature isotherms for Kr, RbBr [16] and Rb.

At ambient conditions the electrons making up the Rb 4p inner-core closed shell are widely
separated and make a narrow band, but with increasing compression core–core repulsions
begin to dominate the pressure. Evidence for the latter can be drawn from the present band
calculations which show a broadening of the filled 4p band, but is more vividly displayed in
figure 5 by the comparison of room temperature isotherms for Kr, RbBr [16] and Rb. Kr and
RbBr are isoelectronic insulating materials in which the highest occupied states are filled 4p
bands. The figure shows that near 400 kbar the isotherms of the three materials converge. A
similar behaviour has been observed in the case of Cs, Xe and CsI where isotherms of the three
materials were found to converge near 100 kbar [17, 18], the limit of the s–d transition in Cs.
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Figure 6. Rb Hugoniots and isotherm. Full circles with temperatures adjacent are from the present
calculations. Open circles are data of Rice [8]. The dashed curve is the 0 K FP-LMTO isotherm.

3. Results

Figure 6 shows the experimental Hugoniot [8] and the Hugoniot calculated for rubidium starting
from the initial conditionsV0 = 55.7 cm3 mol−1,P0 = 0.00 kbar andT0 = 300 K. Included in
this figure are theT = 0 K FP-LMTO isotherm and calculated shock temperatures at several
points. The predicted Hugoniot is in good agreement with the data of Rice [8].

The calculated values for the nuclear and electronic gammas along the Hugoniot are plotted
in figure 7. At ambient conditions the value of the Slater nuclear gamma is 1.79. It decreases
continuously with increasing compression and approaches the limiting value of 0.5 predicted
for a system of ions in an electron background [19, 20]. For comparison, calculations made for
the Dugdale–McDonald (DM) equation [21] predict a smaller gamma at ambient conditions
but follow the Slater values closely for the range of volumes attained by the experimental
measurements which is from 30 to 16 cm3 mol−1. The fact that both models converge at
high compression and to the correct limiting values suggests that choosing between currently
available nuclear models is unlikely to alter matters significantly.

The electronic Gr̈uneisen parameter is defined asγel = V (∂Pel/∂Eel)v, in analogy
with the nuclear parameter. It can also be written in terms of the temperature asγel =
(V/Cel)(∂Pel/∂T )v, whereCel is the constant volume electronic heat capacity.γel has a value
of −0.3 at ambient conditions due to the pressure lowering resulting from thermal electronic
excitation to d states from the more repulsive s states. With decreasing volumeγel decreases
slowly and reaches a minimum value at 16 cm3 mol−1. At this volume the transfer has begun to
saturate and with increasing temperatureγel begins to approach the limiting high temperature
value of two-thirds for an electron gas.

The partly cancelling effect ofγn andγel is to reduce the influence of thermal contributions
and as a consequence the Hugoniot and isothermal pressure are relatively close together and
rise in parallel. The Hugoniot is expected to stiffen above 500 kbar due to the termination of
the s–d transition and the overlap of the rare-gas cores.
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Figure 7. Nuclear and electronic gammas calculated along the Hugoniot.

A detailed comparison of shock wave and static compression data for the alkali metals was
undertaken by Groveret al [21]. They used the Grüneisen model with the Dugdale–McDonald
model for the nuclear thermal contributions,γn, but they neglected electronic excitations. In
other words their expressions for energy and pressure became

E(T , V ) = E∗(0, V ) + 3NkT (4)

and

P(V, T ) = P ∗(0, V ) + 3γnNkT/V . (5)

The starred variables (our designation) represent the static lattice energy and pressure at 0 K.
The work of Groveret al is the inverse of ours: we predict the Hugoniot from calculated
isotherms while they determined the 0 K isotherm by fitting the Hugoniot to the shock-wave
data. This provides for an interesting comparison.

The reduction of the shock data by Groveret al led to a prediction for a temperature
isotherm that was significantly lower in pressure than was measured statically by Bridgman
[22]. However, subsequent studies have confirmed the correctness of Bridgman’s results
[15, 23]. The reason for this discrepancy is the explicit neglect of thermal electron excitation.

Figure 8 shows the shock data of Rice, the Hugoniot fit to this data by Groveret al and
theP ∗ isotherm that was obtained as a result of this fit. Also included in the figure are the
FP-LMTO isotherms atT = 0 and 17 600 K. The close agreement of the 17 600 K isotherm
with Grover’s prediction shows thatE∗ andP ∗ should be identified with theEel(T , V ) and
Pel(T , V ) in equations (2) and (3). By fitting the Hugoniot they extracted an isotherm that
included thermal electron effects.

Figure 9 shows that the predicted shock temperatures calculated with the present model
are consistently lower than those predicted by Groveret al , because when electron effects are
included in the calculations they act as an energy sink that reduces the temperature rise. At
300 kbar our predicted Hugoniot temperature is 13 000 K, or about 5000 K lower. These results
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Figure 8. Comparison of shock data and isotherms. Open circles are the shock data [8], and the
long-dashed curve is fitted to this Hugoniot by Groveret al [21]. TheP ∗ (short-dashed curves) is
the isotherm obtained from this fit. Also included for comparison are the FP-LMTO isotherms at
T = 0 and 17 600 K.

Figure 9. Calculated Hugoniot temperatures versus pressure.

confirm the importance of including the thermal electron effects in calculating the equation of
state. Grover, in a subsequent paper, acknowledged the likely importance of d electrons but
without introducing further calculations [24].
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4. Discussion

While the maximum pressure of 300 kbar reached experimentally for Rb is not particularly
high for a shock-compressed metal, the degree of compression up toV0/V ∼ 2.8 at a
temperature of∼13 000 K is relatively high. New experiments with rubidium, using present
day techniques, could extend theP–T range considerably higher and provide important data
for testing theoretical models of dense partially degenerate metals and plasmas. However, the
present study suggests that theoretical closure may not be achieved without including shock
temperature measurements.

To summarize, we have calculated the static and shock equation of state for Rb in very good
agreement with experiment. By comparing our results with previous theory [21] we conclude
that it is necessary to take electronic thermal excitation into account in order to accurately
describe shock-compressed Rb. The equation of state of Rb is governed by changes of the
electronic structure induced by the compression and the increase in temperature, namely, the
pressure-induced lowering of the s band compared to the d band and the thermal transfer of s
electrons into bonding d states, thereby reducing the shock pressure.
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